Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS One ; 18(3): e0280584, 2023.
Article in English | MEDLINE | ID: covidwho-2278210

ABSTRACT

This retrospective observational study aimed to gain a better understanding of the protective duration of prior SARS-CoV-2 infection against reinfection. The objectives were two-fold: to assess the durability of immunity to SARS-CoV-2 reinfection among initially unvaccinated individuals with previous SARS-CoV-2 infection, and to evaluate the crude SARS-CoV-2 reinfection rate and associated risk factors. During the pandemic era time period from February 29, 2020, through April 30, 2021, 144,678,382 individuals with SARS-CoV-2 molecular diagnostic or antibody test results were studied. Rates of reinfection among index-positive individuals were compared to rates of infection among index-negative individuals. Factors associated with reinfection were evaluated using multivariable logistic regression. For both objectives, the outcome was a subsequent positive molecular diagnostic test result. Consistent with prior findings, the risk of reinfection among index-positive individuals was 87% lower than the risk of infection among index-negative individuals. The duration of protection against reinfection was stable over the median 5 months and up to 1-year follow-up interval. Factors associated with an increased reinfection risk included older age, comorbid immunologic conditions, and living in congregate care settings; healthcare workers had a decreased reinfection risk. This large US population-based study suggests that infection induced immunity is durable for variants circulating pre-Delta predominance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reinfection/epidemiology , COVID-19/epidemiology , Antibodies , Health Personnel
2.
Heliyon ; 9(2): e13103, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2282898

ABSTRACT

Despite a growing amount of data around the kinetics and durability of the antibody response induced by vaccination and previous infection, there is little understanding of whether or not a given quantitative level of antibodies correlates to protection against SARS-CoV-2 infection or reinfection. In this study, we examine SARS-CoV-2 anti-spike receptor binding domain (RBD) antibody titers and subsequent SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) tests in a large cohort of US-based patients. We analyzed antibody test results in a cohort of 22,204 individuals, 6.8% (n = 1,509) of whom eventually tested positive for SARS-CoV-2 RNA, suggesting infection or reinfection. Kaplan-Meier curves were plotted to understand the effect of various levels of anti-spike RBD antibody titers (classified into discrete ranges) on subsequent RT-PCR positivity rates. Statistical analyses included fitting a Cox proportional hazards model to estimate the age-, sex- and exposure-adjusted hazard ratios for S antibody titer, using zip-code positivity rates by week as a proxy for COVID-19 exposure. It was found that the best models of the temporally associated infection risk were those based on log antibody titer level (HR = 0.836 (p < 0.05)). When titers were binned, the hazard ratio associated with antibody titer >250 Binding Antibody Units (BAU) was 0.27 (p < 0.05, 95% CI [0.18, 0.41]), while the hazard ratio associated with previous infection was 0.20 (p < 0.05, 95% CI [0.10, 0.39]). Fisher exact odds ratio (OR) for Ab titers <250 BAU showed OR = 2.84 (p < 0.05; 95% CI: [2.30, 3.53]) for predicting the outcome of a subsequent PCR test. Antibody titer levels correlate with protection against subsequent SARS-CoV-2 infection or reinfection when examining a cohort of real-world patients who had the spike RBD antibody assay performed.

3.
Trials ; 22(1): 561, 2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1370945

ABSTRACT

A recently published article described the safety, tolerability, and pharmacokinetic profile of molnupiravir (Painter et al. 2021), a novel antiviral agent with potent activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Here, we report an unprecedented collaboration between sponsor, contract research organization (CRO), and regulatory authorities that enabled accelerated generation of these phase I data, including administration of the first-in-human (FIH) dose of molnupiravir within 5 days of receiving regulatory approval in the United Kingdom (UK). Single and multiple ascending dose (SAD and MAD, respectively) cohorts were dosed in randomized, double-blind, and placebo-controlled fashion, with a 6:2 active-to-placebo ratio in each cohort. A food-effect (FE) cohort included 10 subjects who were randomized to receive drug in the fasted or fed state followed by the fed or fasted state to complete a fed and fasted sequence for each subject. Dose escalation decisions were accelerated and MAD cohorts were initiated prior to completion of all SAD cohorts with the provision that the total daily dose in a MAD cohort would not exceed a dose proven to be safe and well-tolerated in a SAD cohort. Dosing in healthy volunteers was completed for eight single ascending dose (SAD) cohorts, seven multiple ascending dose (MAD) cohorts, and one food-effect (FE) cohort within approximately 16 weeks of initial protocol submission to the Research Ethics Committee (REC) and Medicines and Healthcare products Regulatory Agency (MHRA). Working to standard industry timelines, the FIH study would have taken approximately 46 weeks to complete and 33 weeks to enable phase 2 dosing. Data from this study supported submission of a phase 2/3 clinical trial protocol to the US Food and Drug Administration (FDA) within 8 weeks of initial protocol submission, with FDA comments permitting phase 2 study initiation within two additional weeks. In the setting of a global pandemic, this model of collaboration allows for accelerated generation of clinical data compared to standard processes, without compromising safety.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 , Cytidine/therapeutic use , Hydroxylamines/therapeutic use , Ribonucleosides , Cytidine/analogs & derivatives , Humans , United States
4.
Curr Opin Virol ; 50: 17-22, 2021 10.
Article in English | MEDLINE | ID: covidwho-1275240

ABSTRACT

Despite the availability of vaccines, there remains an urgent need for antiviral drugs with potent activity against SARS-CoV-2, the cause of COVID-19. Millions of people are immune-suppressed and may not be able to mount a fully protective immune response after vaccination. There is also an increasingly critical need for a drug to cover emerging SARS-CoV-2 variants, against which existing vaccines may be less effective. Here, we describe the evolution of molnupiravir (EIDD-2801, MK-4482), a broad-spectrum antiviral agent originally designed for the treatment of Alphavirus infections, into a potential drug for the prevention and treatment of COVID-19. When the pandemic began, molnupiravir was in pre-clinical development for the treatment of seasonal influenza. As COVID-19 spread, the timeline for the development program was moved forward significantly, and focus shifted to treatment of coronavirus infections. Real time consultation with regulatory authorities aided in making the acceleration of the program possible.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , SARS-CoV-2/drug effects , Administration, Oral , Cytidine/therapeutic use , Humans
5.
JAMA Intern Med ; 181(5): 672-679, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1098863

ABSTRACT

Importance: Understanding the effect of serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on susceptibility to infection is important for identifying at-risk populations and could have implications for vaccine deployment. Objective: The study purpose was to evaluate evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among patients with positive vs negative test results for antibodies in an observational descriptive cohort study of clinical laboratory and linked claims data. Design, Setting, and Participants: The study created cohorts from a deidentified data set composed of commercial laboratory tests, medical and pharmacy claims, electronic health records, and hospital chargemaster data. Patients were categorized as antibody-positive or antibody-negative according to their first SARS-CoV-2 antibody test in the database. Main Outcomes and Measures: Primary end points were post-index diagnostic NAAT results, with infection defined as a positive diagnostic test post-index, measured in 30-day intervals (0-30, 31-60, 61-90, >90 days). Additional measures included demographic, geographic, and clinical characteristics at the time of the index antibody test, including recorded signs and symptoms or prior evidence of coronavirus 2019 (COVID) diagnoses or positive NAAT results and recorded comorbidities. Results: The cohort included 3 257 478 unique patients with an index antibody test; 56% were female with a median (SD) age of 48 (20) years. Of these, 2 876 773 (88.3%) had a negative index antibody result, and 378 606 (11.6%) had a positive index antibody result. Patients with a negative antibody test result were older than those with a positive result (mean age 48 vs 44 years). Of index-positive patients, 18.4% converted to seronegative over the follow-up period. During the follow-up periods, the ratio (95% CI) of positive NAAT results among individuals who had a positive antibody test at index vs those with a negative antibody test at index was 2.85 (95% CI, 2.73-2.97) at 0 to 30 days, 0.67 (95% CI, 0.6-0.74) at 31 to 60 days, 0.29 (95% CI, 0.24-0.35) at 61 to 90 days, and 0.10 (95% CI, 0.05-0.19) at more than 90 days. Conclusions and Relevance: In this cohort study, patients with positive antibody test results were initially more likely to have positive NAAT results, consistent with prolonged RNA shedding, but became markedly less likely to have positive NAAT results over time, suggesting that seropositivity is associated with protection from infection. The duration of protection is unknown, and protection may wane over time.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , COVID-19 , Disease Susceptibility , SARS-CoV-2 , Adult , Age Factors , Antibodies, Viral/isolation & purification , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Serological Testing/methods , COVID-19 Serological Testing/statistics & numerical data , Correlation of Data , Disease Susceptibility/diagnosis , Disease Susceptibility/epidemiology , Disease Susceptibility/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Symptom Assessment/methods , Symptom Assessment/statistics & numerical data , United States/epidemiology , Virus Shedding/immunology
SELECTION OF CITATIONS
SEARCH DETAIL